쏟아지는 GPU 속에서 무엇을 선택해야 하는지 고민한 경험은 누구나 있을 듯 합니다. 가격도 만만치 않을 뿐더러 구입했을 때 원하는 목적대로 사용하지 못하면 낭패니까요. 저도 이런 경험이 있습니다. 이런 고민 해소를 위해 벤치마킹 자료까지는 아니더라도 그래픽 카드를 나열해두고 비교할 수 있는 자료가 있었으면 좋겠다고 생각한 적이 있습니다. 그래서 틈틈이 준비해봤죠. 우선 그래픽카드를 선택하는데 가장 큰 부분을 차지하는 CUDA 코어를 비교해봤습니다. (CUDA 코어로 명시한건 현재 NVIDIA 제품만 대상으로 했기 때문입니다) 그래픽카드가 쌍으로(per GPU) 탑재되거나, 세부 모델이 나뉘는 경우는 그래프에는 표기하지 않았습니다. 또한 현재는 NVIDIA제품만 비교했지만 시간 될 때 지속적으로 추가시킬..
GPU를 사용하는 머신러닝 환경을 구축하기 위해서는 virtualenv, anaconda 등 파이썬의 가상환경을 통한 다양한 방법이 제시되는데 이와 같은 환경에는 문제가 하나 있다. 바로 다양한 버전의 CUDA를 사용하는데 상당히 제한적이라는 것인데, 이게 왜 문제가 되는가 하면 여려가지 전제를 이야기 할 필요가 있다. 보통 다양한 버전의 CUDA를 필요로 하는 경우는 여러개의 프로젝트를 병행으로 개발하는 상태이고 한개의 워크스테이션(혹은 클라우드 인스턴스)에 여러명의 엔지니어가 접속해서 작업을 진행하게 된다. 이때 A라는 엔지니어가 잘못 건드린 글로벌한 CUDA 설정이 B 개발자에게까지 영향을 줄 수 있는 상황이 충분히 존재한다. 이건 혼자 사용하는 머신이라도 마찬가지다. 참담하게도 이런경우에는 시스템..
우리가 작업하는 다양한 소스코드는 때로는 서로 다른 버전의 cuda 를 사용하기도 합니다. 그리고 물리적으로 한 대의 머신을 공유해서 사용한다고 했을 때 여러 버전의 cuda 를 이용하는 것은 매우 당연한 일이겠습니다. 이번 글에서는 어떻게 그것이 가능한지에 대한 이야기를 짧게 공유합니다. 1. cuda 설치 ( https://developer.nvidia.com/cuda-downloads )링크에 접속해서 cuda 를 다운로드 받습니다. OS 부터 하나씩 선택해나가면 최종적으로 아래와 같은 화면을 볼 수 있습ㄴ다. 이 글이 작성된 시점 기준으로는 cuda 10.1 이 최신버전이라 위에 링크에 접속하면 다음 버전으로 가이드가 됩니다.다운로드 받은 cuda 는 위에 설명에 있는 것처럼 터미널에서 실행해주면..
아래와 같이 tensorflow-gpu 를 설치하였고, pip install tensorflow-gpu==1.9코드상에서 import 를 하려고하니 에러가 발생했습니다. (tensorflow_p36) $ python Python 3.6.5 |Anaconda, Inc.| (default, Apr 29 2018, 16:14:56) [GCC 7.2.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import tensorflow as tf Traceback (most recent call last): File "/home/caley/anaconda3/envs/tensorflow_p36/lib/python3..
- Total
- Today
- Yesterday