PyTorch Hub의 기세가 무섭습니다. 코드 구현체를 찾으려면 GitHub을 기웃거리면 되고 컨테이너를 찾으려면 Docker Hub로 가면 되듯이 얼마후면 딥러닝 모델 구현체를 찾기 위해서는 PyTorch Hub를 찾는 날이 올지도 모르겠습니다. 유명한 딥러닝 모델의 구현체들이 아래처럼 속속 등록되고 있는데요, 그중에 유독 눈에 띈 것은 Filter를 audio로 지정했을 때 나오는 Nvidia에서 구현한 Tacotron2, WaveGlow였습니다. 요즘 관심있게 보고 있던 모델이었기 때문에 PyTorch Hub와 함께 묶어서 살펴보기 좋겠다는 생각이 들어서 아래 링크를 참고해서 테스트를 진행해봤습니다. https://pytorch.org/hub/nvidia_deeplearningexamples_wa..
여기 블로그 글을 RSS 받으시는 분들은 아시겠지만 저는 도커 환경을 꽤 좋아합니다. 일단 1) PC를 군더더기 없이 깔끔하게 사용할 수 있는 장점이 있고 2) 정리할때도 깔끔하게 할 수 있습니다. 3) 나중에 다른 시스템으로 옮길 때 호환성은 이루말 할수 없습니다. 아무튼, 이런 장점들 때문에 웬만하면 모든 개발을 도커에서 진행하고 있는데 아래와 같은 상황을 마주했습니다. 한참 딥러닝 모델을 개발하고, 이를 jupyter notebook으로 inference등의 테스트를 진행하려고 보니, Host 머신에서 jupyter의 포트로 접속 할 수가 없지 않겠습니까? Host에서 컨테이너 내부의 포트로 접속하려면 PNAT나 Proxy를 사용해야 하는데 이런것들은 처음 컨테이너를 생성할 때 지정을 해줘야 하는 ..
- Total
- Today
- Yesterday